

SYLLABUS

Applied Mathematics for Economics

Academic year 2025-2026

1. Information regarding the program

1.1. Higher education institution	Universitatea Babeş Bolyai
1.2. Faculty	Business
1.3. Department	Business
1.4. Field of study	Business Administration
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Business Administration/Bachelor in Economic Studies
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the disc	ipline	Applied	Applied Mathematics for Economics				Discipline code	ILE	0086
2.2. Course coordina	itor	r Assoc.prof. Gabriela PETRUŞEL, PhD							
2.3. Seminar coordinator Assoc.prof. Gabriela PETRUŞEL, PhD									
2.4. Year of study	1	2.5. Semes	ter	2	2.6. Type of evaluation	Е	2.7. Discipline regin	me	compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment for individual study (ID)	and self-s	study activities (SA)			hours
Learning using manual, course support,	bibliograp	hy, course notes (SA)			14
Additional documentation (in libraries, o	n electro	nic platforms, field docu	mentation)		14
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					2
Evaluations					2
Other activities:					
3.7. Total individual study hours					69
3.8. Total hours per semester					125
3.9. Number of ECTS credits					5

4. Prerequisites (if necessary)

- 1	: I Terequisites (if he	eessary)
	4.1. curriculum	
	4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	classroom with computer and projector;
5.2. for the seminar /lab activities	classroom with computer and projector;

6.1. Specific competencies acquired

Professional/essential competencies	C1. Gathering, processing, and analysing data regarding the interaction between a company/ an organisation and the external environment. C1.3. Assessing critically and constructively the way of explaining and/or solving problems referring to the economic influence of the external environment on a company/an organization. C2. Providing assistance for running a company/ an organisation as a whole. C2.3. Applying the appropriate tools for solving a problem regarding the relations between the subdivisions of the enterprise/organization
Transversal competencies	CT.1. Implementing ethical principles, norms, and values within one's own rigorous, efficient, and responsible strategy of work.

6.2. Learning outcomes

Knowledge	The student has knowledge of accounting, processing, and analysis of economic and financial information required for an effective organisation and management of businesses. • Know mathematical methods and use computational technologies to perform analyses and design solutions to specific problems. Know methods of collecting data and making statistics for testing and evaluation in order to generate statements and pattern predictions, in order to discover useful information in the decision-making process.
Skills	The student has the necessary skills to use methods and techniques specific to the financial and accounting management of an enterprise as a whole, specialised software included. • Use dedicated software for data analysis, including statistics, spreadsheets and databases, explore the possibilities to prepare reports to administrators, superiors or customers. • Performs systems analysis and calculates to what extent changes could affect the results
Responsibility and autonomy:	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 acquire knowledge and skills in several areas of mathematics, economics and business critical applications; developing skills of mathematical modelling of business processes; communication skills in mathematical language;
7.2 Specific objective of the discipline	 the ability to use the mathematical language in understanding economic phenomena; the ability to interpret phenomena and economic trends through the mathematical apparatus; the ability to determine the optimal in an economic process; the ability to effectively use post-optimization techniques and parametric programming of economic process that can be transcribed into linear programming language; the ability to produce an optimal transport plan;

8. Content

8.1 Course	Teaching	methods	Remarks
 Real functions of one variable the notion of function of the table of variation, the the properties of real funvariable; 	one variable, graph; inte	ractive discussion,	one lecture
2. Extreme values for real funct variable with applications in ✓ Find the extreme points functions of one variable ✓ Find the maximum value economical functions of o	business of real inter of the	ractive discussion,	one lecture
3. Differential calculus ✓ differential of a real func variables; ✓ partial derivatives of firs ✓ higher order partial deriv ✓ higher order differentials	t order; vatives; s;	ractive discussion,	one lecture
 4. Extreme values for real funct variables ✓ Find the extreme points functions of several varia applications in economic 	of real inter	ractive discussion,	one lecture
 Adjustment and interpolation applications in business ✓ data adjustment; ✓ data interpolation; 	inte	ractive discussion,	one lecture
6. Real n-dimensional vector sp vector space R ⁿ linear dependence in R ⁿ basis in a vector space; the basis algorithm with	inte	ractive discussion,	one lecture
7. Linear equations and inequal ✓ how to solve a linear equ using basis changing algo ✓ how to solve linear inequ	ation system orithm; interpolating system;	ractive discussion,	one lecture
8. Linear programming problem	inte	ractive discussion,	one lecture

✓ mathematical modeling for the linear						
programming problem;						
✓ solutions for a linear programming						
problem;						
✓ graphical method and algebraic						
method;						
9. The Simplex Algorithm	interactive discussion,	one lecture				
✓ the rules of simplex algorithm method;	interactive discussion,	one lecture				
10. Duality in linear programming problem						
✓ dual problem;	interactive discussion,	one lecture				
✓ dual simplex algorithm;		one lecture				
11. Post-Optimization						
✓ the problem of post-optimization;	interactive discussion,					
✓ modifying the objective functions	interactive discussion,	one lecture				
coefficients;						
12. Parametric programming problem						
✓ the problem of parametric	_	_				
programming;	interactive discussion,	one lecture				
✓ using parameters as coefficients of						
objective function;						
13. Transportation problems with applications						
in business						
✓ construction of transportation problem;	interactive discussion,	one lecture				
✓ solutions of a transportation problem;						
	✓ solving methods;					
14. Revision	interactive discussion,	one lecture				
✓ solving a model for final exam;						
Bibliography:						

- 1. Tania Lazăr, Vasile Lazăr, Gabriela Petrușel: Matematici aplicate în economie, Risoprint 2014, 200 p.
- Cristian Chifu, Gabriela Petrusel, *Matematica aplicata in administrarea afacerilor*, Casa Cartii de Stiinta, 2012.
- 3. Chifu I.C., Matematici pentru economiști, Alma Mater, Cluj-Napoca, 2006. (biblioteca facultății).
- Mureşan A. S., Mihoc M.,..., Matematici pentru economiști, vol. I, Ed. Dacia, Cluj-Napoca, 2000. 4.
- Wilkes M., Mathematics for Business, Finance and Economics, International Thomson Business Press, 1999.

8.2 Seminar / laboratory	Metode de predare	Observații
 Real functions of one variables ✓ the notion of function of one variable, the table of variation, the graph; ✓ the properties of real functions of one variable; 	exercise, case study	one seminar
 Extreme values for real functions of one variable with applications in business ✓ Find the extreme points of real functions of one variable; ✓ Find the maximum value of the economical functions of one variable; 	exercise, case study	one seminar
 3. Differential calculus ✓ differential of a real function of several variables; ✓ partial derivatives of first order; ✓ higher order partial derivatives; ✓ higher order differentials; 	exercise, case study	one seminar
4. Extreme values for real functions of several variables	exercise, case study	one seminar

0						
✓ Find the extreme points of real						
functions of several variable with						
applications in economics;						
5. Adjustment and interpolation of data with						
applications in business						
√ data adjustment;	exercise, case study	one seminar				
✓ data interpolation;						
6. Real n-dimensional vector space						
✓ vector space R ⁿ						
✓ linear dependence in R ⁿ	exercise, case study	one seminar				
✓ basis in a vector space;						
the basis algorithm with applications;						
7. Linear equations and inequality systems						
✓ how to solve a linear equation system						
using basis changing algorithm;	exercise, case study	one seminar				
✓ how to solve linear inequality system;						
8. Linear programming problem						
✓ mathematical modeling for the linear						
programming problem;						
✓ solutions for a linear programming	exercise, case study	one seminar				
problem;	exercise, case study					
or objectify ✓ graphical method and algebraic						
method;						
9. The Simplex Algorithm						
	arranaina anna atrodor					
✓ the rules of simplex algorithm method;	exercise, case study	one seminar				
10 Duelitaria linear programming problem						
10. Duality in linear programming problem						
✓ dual problem;	exercise, case study	one seminar				
dual simplex algorithm;						
11. Post-Optimization						
✓ the problem of post-optimization;	exercise, case study	one seminar				
✓ modifying the objective functions						
coefficients;						
12. Parametric programming problem						
✓ the problem of parametric						
programming;	exercise, case study	one seminar				
✓ using parameters as coefficients of	enercise, case staay					
objective function;						
13. Transportation problems with applications						
in business						
✓ construction of transportation problem;	exercise, case study	one seminar				
✓ solutions of a transportation problem;						
✓ solving methods;						
14. Revision		an a garatin an				
✓ review exercises and problems	exercise, case study	one seminar				
Bibliography:	Bibliography:					

Bibliography:

- 1. Tania Lazăr, Vasile Lazăr, Gabriela Petrușel: Matematici aplicate în economie, Risoprint 2014, 200 p.
- 2. Cristian Chifu, Gabriela Petrusel, *Matematica aplicata in administrarea afacerilor*, Casa Cartii de Stiinta, 2012.
- 3. Chifu I.C., Matematici pentru economiști, Alma Mater, Cluj-Napoca, 2006. (biblioteca facultății).
- 4. Mureşan A. S., Mihoc M.,..., *Matematici pentru economiști*, vol. I, Ed. Dacia, Cluj-Napoca, 2000.
- 5. Wilkes M., *Mathematics for Business, Finance and Economics*, International Thomson Business Press, 1999.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course content is correspondence with what is done in other universities in the country and abroad. To adapt to the market demands of the contents meetings were held with representatives of the business community.

10. Evaluation

- The same evaluation criteria are maintained for all exams sessions. The components of the evaluation process carried out during the semester cannot be recovered/redone in the examination sessions.
- To be able to accumulate the points obtained during the semester, it is mandatory to obtain a minimum of 5 (five) in the final exam (written/oral).

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	 correct logical and coherent application of the concepts learned logical and accurate explanation and interpretation of the results; 	Final Exam (during the exam session)	50%
10.5 Seminar/laborator	the ability to apply concepts learned in practice correct logical and	Test (during the semester)	30%
	coherent application of the concepts learned economic explanation of the results	the active participation in seminars	20%

10.6 Minimum standard of performance

For the minimum grade (5), students must

- Know the fundamental concepts and to be able to apply them.
- To give an interpretation of the results...

11. Labels ODD (Sustainable Development Goals)1

Not Applicable

Date: Signature of course coordinator Signature of seminar coordinator

28.03.2025 Assoc.prof. Gabriela PETRUŞEL, PhD Assoc.prof. Gabriela PETRUŞEL, PhD

Date of approval:

10.04.2025

Signature of the head of department Ioan Cristian CHIFU, PhD

¹ Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write "Not applicable.".